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ABSTRACT 
Let .f,~ ---- ~"]~=lv~r~, n ---- 1,. . . ,  be a martingale transform of a 
Rademacher sequence ( r , )  and let (r~) be an independent copy of (rn). 
The main result of this paper states that there exists an absolute constant 
K such that for all p, 1 _< p < oo, the following inequality is true: 

In order to prove this result, we obtain some inequalities which may be 
of independent interest. In particular, we show that for every sequence of 
scalars (a,~) one has 

] E a h r k  P ~-~l,,((aa),~/P'-), 

where KI,2 ((a.) ,  V~) ---- K((a . ) ,  ~ ;  11,12) is the K-interpolation norm 
between Ii and l ] .  We also derive a new exponential inequality for mar- 
tingale transforms of a Rademacher sequence. 

1. I n t r o d u c t i o n  

This  p a p e r  concerns the  Lp-norm inequal i t ies  for cer ta in  ma r t i nga l e  t ransforms .  

Let  (f/ ,  j r ,  p )  be  a p r o b a b i l i t y  space.  Let  (~'n) be  an  increas ing  sequence of  sub -a -  

a lgebras  of~- .  A sequence (Xn)  of r a n d o m  var iables  is sa id  to  be  (Y-'n)-predictable 

(or j u s t  p red ic tab le ,  if  t he re  is no r isk of  confusion) p rov ided  for each n > 1, Xn  is 
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Y:'`_l-measurable random variable. All equalities or inequalities between random 

variables are assumed to hold almost surely. For any sequence (X'`) of random 

variables we shall write X* = sup,, IX'`l and X* = maxl<k<'` IXkl. The Lr-norm , 

1 < p _< cr of a random variable X is denoted by IlXll,, and I(A) or 1.4 will 

denote the indicator function of a set A. Let (~'`) be a sequence of independent, 

mean-zero random variables and set ~'` = tT(~,,. . . ,  ~,,), n = 1, . . . .  If (v,)  is a 

sequence predictable relative to (~'`) then a sequence (f'`) defined by 

Jr" = E vk~k, n = 1 , . . .  
k = l  

is a martingale and is referred to as martingale transform of the sequence (~k). 

Denote by (~')  an independent copy of a sequence (~'`). It is known that for each 

p, 1 < p < c~, there exist constants Cp and K r depending only on p such that  

for all predictable sequences (v'`) of random variables the following two-sided 

estimate holds: 

(,) c ? l l  v,r _< II -< K,  II = 1,... 
k = l  k----I k = l  

Several proofs of (*) as well as of more general results axe available (cf. e.g. Zinn 

[26], Hitczenko [10, 13] or McConneU [23]). The proofs given in the last two 

papers show that  both constants G r and K r are bounded above by O(p) for large 

p. It is not hard to see that the above bound on Gp is optimal i.e. that there are 

sequences (~'`) and (v'`) for which: 

k---I k = l  

Indeed, if ( r , )  is a Rademacher sequence (i.e. a sequence of i.i.d, random vari- 

ables such that  P(rn = 1) = P ( r ,  = -1 )  = 1/2) and vk = I ( r  _> k), where 

r = i n f { n  E N :  r ,  = r ' `- l},  then I[ ~vkrkl [ r  _< 1. On the other hand, denoting 

by [z] the integer part of a number z, we have that 

oo k b,] 

k=l  jffil j = l  

~_P(I" = [pl)[p]PP(r~ = 1,j  = 1 , . . . ,  [p]) ~ (p/4) ' .  
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In this paper we focus our attention on the right inequality in (*), which is more 

interesting from the point of view of applications. Our main result asserts that, 

if ~k = rk then the constant Kp may actually be chosen to be independent of p. 

This should be compared with a result of Klass [16, Theorem 3.1] who showed 

that if (~ )  is a sequence of independent random variables and vk = I ( r  > k), 

where r is a stopping time with respect to (~k), then (*) holds with constant Kp 

independent of p. 

Our proof relies on martingale methods, and we believe that some aspects of 

our approach may be of independent interest. In particular, we obtain a two-sided 

inequality for the Lp-norm of the sum ~ akrk in terms of K((an), x/if; ~1, s the 

K-interpolation norm of a sequence (a,). We also establish a new exponential 

inequality for martingale transforms of a Rademacher sequence. 

In view of the main result of this paper one may be tempted to ask whether the 

following statement is true: There exists a constant C such that for all sequences 

(v.) predictable with respect to the natural filtration generated by a Raxtemacher 

sequence (rn) and all t > 0 one has 

P(I ~ vkrkl >_ Ct) < CP(I ~ vkrgl >_ t), 

where (r',) is an independent copy of (r.) (such inequality was actually conjec- 

tured by Kwapiefi and Woyczyfiski [19]). A negative answer to this question 

was given recently by Talagrand (personal communication). We shall present his 

example and would like to thank him for permitting us to include it in this paper. 

The paper is organized as follows. The next section contains some preliminary 

lemmas. Sections 3 and 4 contain the main ingredients needed for the proof. In 

the former we prove an approximation for the Lp-norm of Rademacher averages, 

while in the latter we obtain an exponential inequality for martingale transforms 

of (r,). The main result is stated in Section 5. It may be easily generalized 

to martingale transforms satisfying certain regularity condition. This extension 

is not completely satisfactory, since the constant K depends on the regularity 

constant of the original martingale. Lastly, in Section 6, we present Talagrand's 

example. 

2. Prel iminar ies  

As we mentioned in the introduction, we shall use martingale methods. We begin 

by recalling briefly necessary terminology and we refer the reader to the paper 
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Burkholder and Gundy [6] for more details. 

Given a martingale f = (fn) with difference sequence d = (d , )  and two stop- 

ping times u and p such that v _> p, for n = 1, . . . ,  we let 

n 

= < k _< v)d . 
1:----1 

Then the sequence ~fv = (~f~) is also a martingale (referred to as f started 

at p and stopped at u). In particular, fn  = ( f0 , . . . ,  fn-1,  st,, fn , . . . ) .  Let (~' ,)  

be an increasing sequence of ~-algebras and assume that A f is a collection of 

martingales relative to (~',) which is closed under starting and stopping (i.e., 

f E A r implies ~f~ E A/" for all stopping times u and # satisfying v >_ p). We 

shall consider an operator T defined on a collection Af with values in the class of 

all nonnegative random variables on the same probability space. We shall assume 

that T satisfies the following conditions (cf. Burkholder and Gundy [6]): 

(B1) T is quasi-linear, i.e., T ( f  + g) <_ "t(T(f) + T(g)), for some 

nonnegative q, and all martingales f ,  g E A/'. 

(B2) T is local, i.e., T( f )  = 0 on the set {s(.f) - 0}, f EAf  where 

is the conditional square function of f .  

(B3) T is symmetric, i.e., T( f )  = T ( - f ) ,  for all martingales f E A/'. 

If 7 -- 1 then T is sublinear. An operator T is called m e a s u r a b l e  (resp. p re -  

d ic tab le )  if, for n = 1 , . . . ,  T ( f  n) is ~'n-measurable (resp. Jrn_l-measurable) ran- 

dom variable. For example, the square function S( f )  defined by S( f )  = (~.. d~) 1/2 

is a measurable operator while the conditional square function is a predictable 

operator on the collection of all martingales relative to (~'n). 

Our first lemma gives a sufficient condition for a comparison of the Lp- 

norms of random variables and can be found in Burkholder [4, Lemma 7.1]: 

LEMMA 2.1: Fix 0 < p < oo. Suppose that X and Y are nonnegative random 

variables and that there exist positive numbers 6, ~ > 1 + 6 and e < 1/fl v such 

that for all positive A 's one has 

Then 

P(X >_ flA, Y < 6A) _< ~P(X >_ )Q. 

IIXll   llrlg. 
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The above lemma in a more general form was originally used to prove some mar- 

tingale inequalities (cf. Burkholder [4], Burkholder and Gundy [6] and Burkhol- 

der, Davis and Gundy [5]. It was realized later (see e.g. Bafiuelos [1] or Hitczenko 

[11, 12]) that it could also be used to give rather precise information on the growth 

rate of the constants involved in some of those inequalities. The next lemma hints 

at the way we are going to use that idea. 

LEMMA 2.2: Fix 1 < p < oo. Let X be any class of martingales which is closed 

under starting and stopping and let T be a predictable operator on Af satisfying 

conditions (B1)-(B3). Suppose that there exist positive constants co and ~; such 

that, for all mean-zero martingales f E .It~" the following inequality holds: 

P(If.I > clIT*(F)Iloo) < 2exp {-~c2p} , c > Co 

(recall that, according to our notation, T*(f") = max~<_k<_. T(fk)). Then, 

there exists an absolute constant 0 = t9(,r 7) such that, for all 6 > 0 and/3 > 

1 + 6(1 + co), we have that 

P ( f * > 1 ~ A , T ' ( f )  V d * < 6 A ) < 2 e x p {  O ( / ~ - I - 6 ) Z P }  - - - "~i P(f* >- A). 

Consequently, i f  additionally, lid*lip -<  IIT'(f)II., for some absolute constant 

then 

IIf*ll, -< ClIT*(f)IIp, 
where C is an absolute constant. 

Proof." Our proof follows usual argument; we let 

v = inf{n E N: If,  I > #a}, 

p = inf{n E N: If-I -> A}, 

r = inf{n E N: T ( f  "+1) V d* > 6A}. 

Then, on the set {v < oo, r = eo} we have 

uAr uAr /~--1 

] E d k l > l E d k ] - l E d k l - - l d ~ ' [  > ( ~ - l - 6 ) A "  
k=/~+l k= l  k= l  

Moreover, by computation similar to that in Hitczenko [12, proof of Theorem 3.1] 

or Burkholder and Gundy [6, bottom half of page 256] we infer that 
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IIT*(.f"^') l l~ <_ 272~x. Therefore, as long as (# - 1 - ~ ) / 2 7 2 ~  ~ co,  w e  have 

P(f* >_ ~A, T*(f) V d* < 6A, ) 

= P ( v  < co, r = co) 
v ^ f  

<P(I ~ d,I  > ( a -  1 - 6)A) 

~ ^ "  # - 1 - 6 i im, (~ / ,^ , ) l l~  ) -<P(I E dkl > 
k----# 

" ^ "  ~ -  1 -  6 i i T , ( # f , ^ , ) l l ~ l ~  " . --EP(I E > 
k----/~ 

Note that, conditionally on ~'~,, ~f"^r  is a mean-zero martingale. Therefore, 

it follows from our assumption (applied to the conditional measure P(  �9 I ~ )  ) 
"(~ ' - -1--6) : l r  l that the conditional probability above does not exceed 2exp - (2~6)~ j, if 

/J < oo, and is zero if/~ = c0. Consequently, the last expectation does not exceed 

{ - 1 -  6)ZP} { ~(1~- 1 - ' ) 2 P }  
2E exp t~(/~ ~2" I( tt < co) = 2 exp ~-2" P(f* > A). 

This completes the proof of the first statement. The second statement is now a 

consequence of Lemma 2.1. | 

We shall now define an operator on martingale transforms of Rademacher 

sequence. Assume for convenience that (rn) and ( r : )  are defined on different 

probability spaces, (f~, ~', P)  and (fi', ~", P') ,  respectively. The symbol E'(  �9 ) 

will be used to denote the integration with respect to the measure P'. Let AC 

be a class of all martingale transforms of a sequence (r , ) ,  i.e. AC consists of all 

martingales y = (y , )  of the form: 

n 

fn = E vkrk , n =  I , . . . ,  
k = l  

where (v.)  is a predictable sequence. For 1 < p < co we define an operator on 

A[ by the formula: 

T,(f) = (E'I ~ ,,v-~,l'Y/', 
where .In = E~=I  Pkrk" Observe that Tp is a predictable operator satisfying 

the conditions (B1)-(B3) above, and that N" is a subclass of the class of all 
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martingales which is closed under starting and stopping (see Remark 3.2 (ii) in 

Hitczenko [12]). Also note that, by Fubini's theorem 

n 

iOT,r = II 
k = l  

and by Levy's inequality we have T; ( f " )  < 2Tp(f"). Thus, in view of Lemma 

2.2, we need to establish an appropriate upper bound on the quantity 

P(I$-I >- tllTpCf")ll~), t > O. 

In order to accomplish that goal we shall proceed in two steps. Firstly, we 

shall need an information on the size of the L~-norm of Tp(f").  To this end it 

suffices to have a precise approximation for the Lp-norm of a sum ~ atrt ,  where 

(at) is a sequence of real numbers. Unfortunately, the hitherto known two-sided 

estimates for II ~'~atrtllp lack the required precision, since an upper and lower 

bounds usually involve constants depending on p, typically of different order of 

the magnitude. This difficulty will be overcome in the next section, where we 

shall establish a rather exact approximation for II atr~lip. Once this is done, 

we shall easily obtain an appropriate exponential bound on the tail probabilities 

of ~ vkrt. This will be done in the fourth section of the present paper. 

3. Lp-norms of  Rademacher averages 

In this section we shall establish a precise approximation for the expressions of 

the form: 
Tt 

ii otr ll,, 
k = l  

where (at)  is a sequence of reals. Our approach will follow a method used 

by Montgomery-Smith [24]. Before we state the result we need to introduce 

some more notation. For a sequence a = (at)  of real numbers we let laip = 

( ~  [aklP) l/p, 1 < p < oo. Let a E s be a sequence of real numbers and consider 

the interpolation norm 

K(a,t;~l,~2) = K1.2(a,t) = inf{la'll + tJa"12: a',a" E ~2,a' + a" = a}. 

We shall also use the following norm on ~2: For t E N and a E ~2 we let 
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where the supremum is taken over all pairwise disjoint subsets, BI . . . .  , Bt of posi- 

tive integers. Those two norms are related by the following inequality established 

in Montgomery-Smith [24]: 

LEMMA 3.1: For a/l a E ~2 and t such that t 2 E N we have 

IlallP<,=) -< Kz,2(a,t) <_ v~llalle<,=). 

We shall use this lemma to obtain the following two sided estimate on the Lp- 

norm of Rademacher averages: 

THEOREM 3.2: Let (rk) be a Rademacher sequence. Then, there exists a con- 

stant c > 0 such that, for all p, 1 < p < oo, and all a E ~2 the following inequa/ity 

is true: 

cK,,:(o, <_ II <- K,,:(a, 
Proo[: The right hand side inequality is a direct consequence of the Khintchine's 

inequality with the best constant (cf. Haagerup [9]). Given an e > 0 pick a' and 

a" such that 

I.'il + v~la"l~ < gl ,~( . ,  v~)  + ~. 

Then we have that  

- ~ 1/2 

<K1,2(a, V~) + e, 

and the inequality follows by letting e ~ 0. 

To prove the left hand side inequality we first observe that without loss of 

generality p can be assumed to be a positive integer. This is a consequence of the 

monotonicity of K1,2(a,t) as a function of t and the following hypercontraction 

inequality for Rademacher functions due to Borell [3]: 

IIE~ ,, l < q < p < o o .  

Fix 0 < 6 < 1 and take e > 0 such that (1 + e)$ < 1. By Lemma 3.1 there exist 

pairwise disjoint subsets B1 , . . . ,  B v of N such that 

Ilaltp(p) < (I + e) a~ . 
m=1 k 



Vol. 84, 1993 I N E Q U A L I T Y  FOR MARTINGALE T R A N S F O R M S  169 

Then 
p 

m = l  kEBm 

(;.):"}) x P akrk _> (1 + ()6 a 2 
m = l  k k 

= (: + :1: :~ -I 
\ k E B , ~  I 

,zo.~.,;>_(:::-~.(l+.>.~') 
so that 

m = l  k k 

By the Paley-Zygmtmd inequality (cf. e.g. Kaha~e [15, p. 24]) we infer that 

P a , ~ ,  -> (: + ~): ~ al >- : 
k \ k f i B , .  ] 

Therefore, (a (a)17. 
(: + ~)6 .I , 

k 

m~-I k 

_>~-~(1 - 6~(i + ,)~)~K~,~(,, v~). 

The left hand side inequality follows now by letting ( ~ O. This completes the 

proof. | 
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4. W e a k  t y p e  e s t i m a t e  for Tp 

In this section we shall prove the following exponential inequality: 

TItEOttEbi 4.1: Let f be a mean-zero martingale, where fn = ~ = 1  vkr~, n = 

1 , . . . ,  is a transform of  a Rademacher sequence. Then, there exist constants 

Co > 0 and ir > 0 such that for every e > co and for every positive number t the 

following inequality is true: 

e( I f - I  >-- cllK1,2(v,t)ll~) <- 2exp {-~c2t2}.  

Before we pass to the proof let us observe, that Theorems 3.1 and 4.1 immediately 

yield the following 

COROLLARY 4.2: Let 1 < p < c~. Under the assumptions of Theorem 4.1, there 

exist constants Co > 0 and ~: > 0 such that for every c > Co we have that 

P(If.I-> cllTp(f")ll~) < 2exp { - ~ c 2 p }  , n = 1 ,  . . . .  

Proof  of Theorem 4.1: According to Holmstedt's formula (el. Holmstedt [14, 

Theorem 4.1] or Bergh and LffstrSm [2, Theorem 3.6.1]), for every sequence 

a E ~2 and all t > 0, the interpolation norm K1,2(a,t) is equivalent (with constant 

not depending on a or t) to the quantity 

Z o'" + ' / E  
k=l \~>[t'] / 

Here, a (k) denotes the kth largest element of the sequence (la~l). We sh~U also 

write a~  ) for the kth largest element of the sequence ( l a l l , . . . ,  In, I), and we 

adopt the convention that  a ~  ) = 0 if k > n. Let cl,2 > 0 be any constant for 

which the inequality 

f t,'l / \ 1/21 
/ Z  o'" +, ! E K1,2(a,t) _> c~,2 (k=, \k>t,,l / j 

is true for all sequences a E ~2 and all t > 0. Fix a positive real number t and put 

s = [t2]. We shall show that the conclusion of our theorem holds with co = 2/cx,2 

and F: = c~,2/8. Given a predictable sequence of random variables (v.) let us 

write 

1)n ~ l~n Jl- W n ,  
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where 

and 

,,,, = s~ ( , , , , ) ( I , , , , I  -c0) ,+ . ( . ) ,  
- . , , , ,_lj = s ~ ( , , , , ) ( I , , , , I -  , , ( '_),)x(I , , , , I  > , , , , - l  J, 

v (o) w. = sgn(v.) (Ivnl ^ . -1) .  
Since (v,,) is predictable, so are (u.)  and (w.) and we have that 

~ 1 , , ~ 1  = ,,(k) 
k=l k=l 

and 

w~ < ~( r  ' 
k----! k>s 

(the latter follows from the fact that w(') < v (r+'), r -- I,...). Since 

k=1 k>s k~-I k>s >I{ } 
- 2  II ~,,(')11~ + tll(~(,,('))')'/'ll~ 

k=l k>s 

>_1 {11 ~,,~11~ + tll(~,4,)'/~lloo} - 2  

we get that 

P(I ~ vkrhl >_cllK,,2(v,t)ll~) 

k=l k>s 

+ P(I ~,,'k,'~ I-> ~11(~,4: / '11~) 

__ O+2exp 8 ' 

where the last inequality follows by the subgaussian inequality for conditionally 

symmetric martingales (cf. e.g. Chang, Wilson and Wolff [7, Theorem 3.1] or 

Hitczenko [12, Lemma 4.3]), and the fact that ccl,2/2 > 1. This completes the 

proof. II 
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5. Domination inequality 

The inequalities proved in the preceding two sections immediately imply the 

following result: 

THEOREM 5.1: There exists an absolute constant K such tha~, for every p, 1 

p < oo, and every martingale f wi~h difference sequence of ~he form: d ,  = vnr,, 

n = 1 , . . .  we have 

n 

lls.'rl, < ~11 Z ~.~,ll,, ,~ = x, . . . .  
k = l  

Remark: The above theorem remains true if Rademacher sequence is replaced 

by a sequence (Tk) of i.i.d, standard Gaussian variables. This follows from the 

fact that 

(E'I ~ vk"l'~lP) lIp = Ih'~ll,(~,,~,)~/~ ~ v"D(~ v~) ~/2 

and from the estimate 

P(I ~ ' k ~ ' k l  _> 0 -< 2exp . n 

Theorem 5.1 can be easily extended to martingale transforms of sequences 

satisfying some regularity conditions (although with constant K depending on 

"regularity constant" of that sequence). Following Gundy [8], we say that a 

sequence (~k) is L~176 if ~k's are uniformly bounded and there exists a 

/ />  0 such that, for each k = 1, . . . ,  

El~kl > Sll~klloo. 

With the above definition we have: 

THEOREM 5.2: Let (~.) be L~176 sequence o[independen~ mean-zero ran- 

dom variables. Then, ~here exists a constant K depending only on ~ such tha~, 

for every pred/c~able sequence (v~ ) we have ~hat 

II E " ~ I I ,  < ~11 E" ,~ , I I , ,  1 < p < ~,. 
Proof." Let us observe first, that if ~ and ~o are i.i.d, mean-zero random variables 

such that l[~[[1 >- 6[[~[loo then 

I1~ - ~'11~ >- I1~11~ >- s11~11r162 > ~11~ - ~'11~. 
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Moreover 

II ~ vk~kll, < II ~vk~'~ll,, + II ~ v~(~k - ~)11, 
Therefore,  we can and do assume in the proof that ~k's are symmetric. We shall 

now use an observation due to Wang [25, the bottom half of p. 399] (el. also 

Hitezenko [12, proof of Lemma 4.3]). Define a sequence of a-algebras (An) by 

letting An = a(~'., 1~-+1 I). It follows from the symmetry that, relative to (An), 

(vn~.) is a martingale difference sequence equidistributed with (une.), where 

(e,) is a Rademacher sequence and (u,)  = (vnl~nl) is predictable sequence. Let 

(tin) be a Rademacher sequence independent of all other random variables under 

consideration. We shall write 

and 

With this notation, denoting by E~ and E~ integration with respect to (e~) and 

(~) ,  respectively we have 

_> ->, 

where the last inequality follows by the contraction principle (of. e.g. Ledoux 

and Talagrand [22, Theorem 4.4]). Therefore, 

IITff(fn)ll~ ~ 611T;(fn)ll~, 

so that, for each c > 0 we have 

e(f* > cllTne(f)ll~) S P(f* ~ c611T;(f)ll~). 

The result now follows from Lemma 2.2 and Corollary 4.2. | 
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6. A n  example 

It is natural to ask whether the results of the preceding section (Theorem 5.1 in 

particular) can be strengthened to domination of tail probabilities. The answer to 

this question turns out to be negative. We would like to conclude by presenting an 

example, which was communicated to us by M. Talagrand and which is included 

here with his kind permission. 

THEOREM 6.1: There is no constant C which makes the inequality: 

true. 

Proof." 

let N2, . . .  N~ be defined by: 

Ni - Ni-1 = 2-(i-*)N1, 

Put  

and then 

Given an integer k let N1 be an integer which will be specified later and 

i = 2 , . . . , k .  

II, = { r l  . . . . .  rN, = 1}, 

f~i = f~i-1N {rN~_,+l . . . . .  rN~} i = 2 , . . . , k .  

Define a predictable sequence of random variables (vi) by the formulas: 

111 = " ' '  = VNI = 1 

UN,-I-1 = " ' "  = UN~ = 211-11 

. . o , . o . . ~  

l ) N h _ t + l  = . . .  = l )Nh = 2 k - 1 / ~ t , _  , .  

Then for t = N1 we have: 

Nh 

P(I  ]'i Jl > k t ) =  2P( j = x, j = X, . . . ,Nk)  = 2. 2-N1(I+2- * +...+2-(~- 1)). 

j=l 

We shall now estimate 
Nh 
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from above. 

/Vh 

+' ( I  ~' 
j= l  

Nh 

Nk 

+' ( I  I -> 
./--1 

N, 

='(IN~;I-> 40<~-'<",)) _- 
NI Nz 

+,(IX~;+,. ~ ~; _>4,),(,~,~)+... 
j----I j----N,+I 

N, N~ 

j= l  j=N~_,+I 

Since 4t = 4N1 > N~ + 2(N2 - N1) + 4(Ns - N2), the first three terms in the last 

sum are zero, and the ith term can be estimated as follows: 

P(l'~i-1 \ ~i) <_ P ( ~ i - 1 )  = 2 -Ni-* = 2 -N*(1+'' '+2-(~-2)). 

By subgaussian inequality for Rademacher functions, one has: 

N, N~ 

j= l  j = N i - , + l  

{ } 
- -  t N~ " 
<2exp 2E(~;~ ~i +"" + 2'-~ E~=N,_,+~ ~)~ 

But 

E ( ~ '  N, r , + . . . + 2  '-1- ~ r~) 2 
j= l  j=Ni=,+l  

= N1(1 +. . .  + 2 ~-1) _< 2~N1, 

so that  the exponent above is less or equal than 

exp{-SN1/2  i} < 2-SNi/2~. 
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Combining the above estimates we obtain that: 

N, N~ 

j = l  j = N I _ , + I  

--<2" 2 -8N112~ �9 2 -Nt(1+ ' ' '+2-(~-2))  

"-2- 2 -N~(1+'''+2-(~-~)) �9 2 -8N~/2~ �9 2 ~(2-0-~)+'''+2-(~-~)) 

Therefore, sumrniug over i we get that 

Nh k N~ 

N, 

This completes the proof since N1 can be made arbitrarily large, l 

Remark: It is probably worth noticing that the above example shows a little 

bit more, namely that vl,'s may be chosen to be of the form v k  = akI(r >_ k), 
k = 1,. . . ,  where (ak) is a nonrandom sequence and r is a stopping time; one just 

puts 

a j = 2  I-1 for Ni- ,<j-<Ni ,  i = l , . . . , k ;  

and r = inf{n: r ,  # r ,-1}.  This shows that moment inequality proved by Klass 

[16, Theorem 3.1] for randomly stopped sums of independent random variables 

can not be strengthened to distributional statement, even for linear combinations 

of Rademacher functions, l 
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